Image and Vision Computing 19 (2001) 503-516

image
vision
COMPUTING

www.elsevier.com/locate/imavis

Reconstruction of degraded image sequences.
Application to film restoration

L. Joyeux, S. Boukir™, B. Besserer, O. Buisson

Laboratoire d’Informatique et d’Imagerie Industrielle (L3i), Université de La Rochelle, Avenue M. Crépeau, F-17042 La Rochelle cedex 1, France

Received 16 April 1999; revised 29 September 2000; accepted 30 September 2000

Abstract

A suitable detection—reconstruction approach is proposed for removing impulsive distortion and other types of deterioration from
degraded image sequences. The main application that has motivated this work is the problem of digital film restoration for the movie
industry, which has only very recently been explored. Line artifacts, which are prominent degradations in motion picture films, are also
considered here. The detection procedure consists of two steps. First, a morphological filter provides impulsive distortions and line scratch
candidates. Unlike impulsive distortions, which appear randomly in an image, line artifacts persist in nearby or the same location across
several frames. Furthermore, the detection process is complicated by the fact that lines occur as natural part in interesting scenes. Therefore,
we add a validation step for separating possible line defects from false detections. It consists in tracking the potential line artifacts over the
frames using a Kalman filter. An interpolation technique, dealing with both low and high frequencies around the detected deteriorations, is
investigated to achieve a nearly invisible reconstruction of damaged areas. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Within the last decade, the restoration of noisy and
noisy—blurred image sequences has become prominent in
a large variety of areas like medical imaging, remote
surveillance or navigation. The main sources of degrada-
tions that can corrupt an image sequence are blurring,
white noise and impulsive distortions. The problem of
removing such degradations has led to numerous spatio-
temporal filters:

e restoring noisy image sequences [7,10,15];

e removing impulsive distortions from an image sequence
[1,12,18];

e restoring noisy—blurred image sequences [4,27,32].

In contrast to the work done in noise suppression, there
has been a little treatment of the problem of suppressing
impulsive distortion in image sequences. The problem is
not a negligible one especially in motion pictures showing
randomly dispersed bright and dark flashes.

Conventional image sequence restoration algorithms
perform some form of global filtering of the frames. Most
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of the work done to date in the area of impulsive noise
suppression in images involves median filtering. The
median operation has been quite successful in images
since it preserves edges well. However, it tends to homo-
genize highly textured regions in the image. To alleviate this
distortion, the window used for the median filter must be as
small as possible (3 X 3 in general). But, impulsive distor-
tion greater in size than 3 X 3 cannot be completely removed
after one pass. Further passes would remove such distortion
but affect the output image quality. To enable greater fide-
lity to be achieved in the image sequence, the Multilevel
Median Filter (MMF) was introduced by Nieminen [26].
This class of filters employs a hierarchy of median opera-
tions that allows one to reject impulsive distortions on the
image with less smoothing than a simple median operation.
Extended versions of MMF have been proposed by Arce [2]
and Alp [1].

It would be an improvement to implement these filters
along a motion trajectory [14,18,23]. Motion-compensated
spatio-temporal filters attempt to take full advantage of the
temporal correlation that exists between frames. However,
this requires that the displacement field be estimated from a
noisy image sequence. Generally, this is treated as a sepa-
rate step in the filtering process. A major drawback comes
from the commonly used assumption that both the displace-
ment and intensity fields are homogeneous. This assumption
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Fig. 1. Frame of a film sequence (La belle et la béte, 1946).

can result in severe artifacts (over-smoothing of edges).
Furthermore, estimation of the motion from image
sequences is, in general, a difficult and time-consuming
task. It is also difficult to have an idea of the real sensitivity
to noise or to image alteration of a motion estimator.

The probabilistic approach produced better results but at a
much higher computational cost [12]. Geman proposed a
nonlinear filter designed to remove noise and other types
of degradation from single images or temporal sequences
while at the same time preserving boundaries and other
authentic features of the original scene. Unlike previous
spatio-temporal filters, this approach is optimization-
based. The processed frame sequence is defined as the mini-
mizer of an image functional rather than as the final result of
a series of filters. Spatial and temporal processing are
performed at the same time: the brightness value at a
pixel in the processed frame reflects a compromise between
the values suggested by the spatial neighbors in the same
frame and the values suggested by the motion-compensated
neighbors in the temporal sequence. However, this method
is complex and is often computationally intensive.

For good detail preservation of texture, it is necessary to
look beyond the use of global filters, which are applied to
the entire image. Areas of the images not affected are often
of very high definition and it is thus desirable not to filter
these areas, as filtering will inevitably introduce some
distortion. For the 1D (audio) case, Veldhuis has presented
a successful method, which involves accurate detection of
the impulsive distortions followed by the reconstruction of
damaged areas [36]. It is an effective way of decreasing

computation and increasing output quality. Motivated by
the work on audio restoration, Kokaram developed a
model-based approach to impulsive distortion removal
[18]. The emphasis is then placed on the choice of an
adequate mathematical model for the luminance variation
to catch a local interaction of some neighbor pixels. One can
then develop a method, which fits this form to the observed
image. To interpolate known missing areas, polynomial
models have been used [21,35]. Polynomial interpolation
usually relies on spline or B-spline representations, which
are the basis for curve fitting [21]. The only requirement of
such methods is the order of the polynomial that best fits the
input signal. This is a good solution for the reconstruction of
homogeneous regions. However, it fails to reconstruct
regions of high activity such as textured areas because it
approximates only the low frequencies of the input signal.
Stochastic models such as Auto Regressive (AR) models
[17,18] or Markov Random Field (MRF) models [22,24]
allow a better interpolation than polynomial models. Indeed,
the high frequencies, which are lost in polynomial interpo-
lation may be recovered using such stochastic interpolation
procedure. However, they are difficult to implement.
Fourier series allow a simple representation of input
signals either with low- or/and high-frequency components
[3,11]. While polynomial and stochastic models require the
knowledge of the model order, the use of Fourier series only
depends on the number of samples of the discrete signal.
Therefore, we propose a powerful restoration technique,
based on Fourier series, providing good detail preservation
of texture in degraded image sequences. This two-stage
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Fig. 2. Image part (left) and corresponding impulsive distortion detection using By (right).

restoration approach first aims at recovering the low-
frequency contents and then deals with higher frequency
characteristics. Before this, damaged areas are detected
using a morphological filter, which incorporates both
computational simplicity and good performance.

Unlike the latter model-based restoration approaches, our
method is a spatial process. Let us emphasize that spatio-
temporal restoration algorithms are more effective than 2D
processes only if the motion estimator performs satisfacto-
rily. However, the behavior of a motion estimator cannot be
guaranteed. There is also the consideration that the
sequences being dealt with are degraded, so the motion
estimator must be robust to noise. Furthermore, 3D restora-
tion methods are far more computationally expensive than
2D techniques.

This paper is organized as follows. Section 2 briefly
presents the main application that has motivated this
work. Section 3 describes the first step of our detec-
tion—reconstruction approach; the detection of impulsive
distortions using a morphological filter. The same filter
is used to detect line artifacts. However, the successful
treatment of these defects requires also a tracking
process, which is described in Section 4. Section 5
focuses on the reconstruction stage, which relies on
both polynomial interpolation and Fourier series.
Discussions and concluding remarks are given in
Section 6.

2. Problem statement

The application that motivates this work is the restoration
of archived black and white motion pictures. Old films are
subject to a variety of degradations, which reduce their
usefulness. The main visual defects are dust spots due to
dust and dirt attached to the film or abrasion removing the
emulsion and line scratches due to film slippage during fast
start, stops and rewinding, therefore scratching the film with
accumulated dirt particles. Fig. 1 shows a frame exhibiting
some typical examples of these artifacts.

Digital film restoration has only very recently been
explored [8,9,12,18,20,24,29]. Up to now, old films have
been restored using traditional film restoration techniques
like chemical baths or film polishing. However, such tech-
niques do not permit the removal of all kinds of degrada-
tions. Computer-aided techniques have also been used to
restore classic old films but they remain very expensive
and take several months for the treatment of just one
movie. Digital restoration lets us expect results beyond
today’s limitations (automated processing, correction of
photographed dust spots and scratches, removing large
defects,...) in far less time than traditional or computer-
aided techniques. A significant productivity gain should
then be achieved for the motion picture industry.

In contrast to classical image sequence restoration, an
automatic digital film restoration system is further
complicated by severe constraints:

e The old films must be scanned at high resolutions in order
to preserve the definition and the visual quality of the
motion picture images. Therefore, each frame is scanned
at 2K resolution (2200 pixels X 1640 pixels) in a 12 bits/
pixel range.

e The restoration algorithms must also preserve the visual
quality of the films.

e The processing power has to be cheap, processing time as
short as possible and the restoration process should be
automated to cut exploitation costs.

Most existing work on old film restoration is based on the
video format [8,9,12,18,20,24,29]. If we apply these tech-
niques on 2K images, they will involve high computational
cost. Besides, motion picture (35 mm) images require a
much better visual quality than video, thus increasing the
complexity of the digital restoration task.

Our digital restoration system automatically detects then
corrects artifacts in degraded motion pictures with minimal
human intervention. Operator assistance is required mainly
to segment the film sequences into sequences of the same
scene. Indeed, we do not automatically handle scene
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Fig. 3. An ambiguous image part (left) and corresponding impulsive distortion detection (right).

changes. Human supervision is also necessary to tune two
external parameters to the detection process and to check the
results of this stage before the restoration step. Both detec-
tion and correction steps run without human interaction on
the raw image sequence while, in computer-aided techni-
ques, the defects are selected then corrected manually, thus
requiring a large number of operators and resulting in unac-
ceptably slow process for industrial use.

In this paper, we will mainly focus on the detection and
the removal of dust spots and line scratches, which are the
most frequent artifacts damaging old films. Of course, the
applications of the algorithms presented here are not limited
to motion pictures. Similar treatment may be used for any
degraded image sequence.

3. Spatial detection of impulsive distortions

Impulsive distortions damaging old films are mainly
caused by dust, hair and scratches. They have the following
properties:

e The gray levels of these artifacts tend to the black, that
means local minima, or to the white, which correspond to
local maxima.

e They have strong edges.

e The maximal spatial surface of the in-scope deteriora-
tions is bounded in relationship with the scanning resolu-
tion.

Dust spots typically can be found on one frame only and
will therefore present a strong temporal discontinuity in
image brightness. Some form of temporal filtering that can
remove outliers seems an obvious strategy to employ
[18,24,34]. However, that motion will need to be compen-
sated for. Unfortunately, motion estimation is not a solved
problem and is also the subject of much research. The
design of a spatio-temporal algorithm is made difficult by
the motion of objects in the scene. Furthermore, it requires
high computational cost particularly in the case of 2K
images. Therefore, to detect impulsive distortions, we

propose a simple spatial method based on morphological
filtering.

3.1. Gray scale morphology

The four fundamental binary morphological transforma-
tions (erosion, dilation, closing and opening) are all
extended to gray scale morphology, without thresholding
via the use of local maximum and minimum operations.

Given a gray scale image [ and a structuring element B,
the following neighborhood operators @ and © form the
basis of classical mathematical morphology [25,31,33]:

Dilation : I ® B = MAX,)ep(I(x + u,y + v) — B(u,v))
Erosion : I(©)B = MIN(,,)ep(I(x + u,y + v) + B(u,v))
Closing : I = (I ® BYSB
Opening : Iz = (ISB) ® B

(1)

3.2. A morphological filter for impulsive distortion detection

The closing operator has the attractive property of delet-
ing local minima. Therefore, we can use it to detect black
impulsive distortions. Similarly, the opening operator
appears well suited for the detection of white deteriorations.
Both morphological detectors of black and white deteriora-
tions are then expressed as a simple difference between the
closing (or the opening) and the original image:

Dy (I(x, y), B) = ((I(x, y) © BYOB) — I(x,y)
@
Dinire (I(x,y), B) = I(x, y) — (((x, »)OB) © B)

Impulsive distortions are then detected when the absolute
value of these differences are greater than a predetermined
threshold S. This parameter is experimentally fixed by an
operator who checks the detection results (image masks) on
the first image of the sequence before running the detection
process on the whole sequence. If the chosen value is low,
the detector reacts to noise; otherwise, the localization of the
distortions is imprecise. Let us notice that this parameter
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Fig. 4. Effects of parameter n on a dilation operation using B,.

does not require a fine tuning. The same value, S = 10, has
been successfully used for all our experiments. Let us
emphasize that a detection rate of 90% (with less than 5%
of false detections) is sufficient to achieve a suitable visual
quality after correction.

3.2.1. Flat structuring element

First, we define a flat structuring element B, as a matrix of
9 X 9 elements whose values have been fixed to zero. The
dimensions of the structuring element have been chosen in
concordance with the maximal spatial surface of the impul-
sive defects. The detection of impulsive distortions caused

Fig. 5. Impulsive distortion detection using By.

by dust particles in an image part of the “La belle et la béte”
film sequence is shown in Fig. 2. Both defects are well
detected.

However, sometimes, this detector selects also natural
parts of the image (false detections). Fig. 3 shows another
part of the “La belle et la béte” sequence with its resulting
deterioration detection. We can notice that, in this second
experiment, the defects are hardly distinguishable from their
neighborhood.

To handle such ambiguities, we use a new structuring
element.

3.2.2. Pyramid-shaped structuring element

We define a new 9 X9 structuring element B, whose
values are constrained in order to distinguish between strong
edges and smooth ones. This pyramid-shaped structuring
element is defined as:

4n 4n 4n 4n 4n 4n 4n 4n 4nT
4n 3n 3n 3n 3n 3n 3n 3n 4n
4n 3n 2n 2n 2n 2n 2n 3n 4n
4n 3n 2n n n n 2n 3n 4n

B,=|4n 3n 2n n 0 n 2n 3n 4n 3)
4n 3n 2n n n n 2n 3n 4n
4n 3n 2n 2n 2n 2n 2n 3n 4n
4n 3n 3n 3n 3n 3n 3n 3n 4n

| 4n 4n 4n 4n 4n 4n 4n 4n 4n

where n represents the slope of image curves gradient.

Only the objects with a slope (at their edges) higher than
the parameter n are detected. This is illustrated in Fig. 4,
which shows the effects of the parameter n on a simple
dilation operation. Indeed, if the slope of the object is
lower than n, the object remains as it is. This occurs for n =
40; the hair is not dilated. When the slope of the object is
greater than n, it is removed. This happens for n = 10; the
hair is dilated. The parameter n, introduced in our pyramid-
shaped structuring element, offers therefore a simple and
efficient mean to detect more or less contrasted objects.

Applying B, (n = 20) on the previous critical image, we
obtain the result depicted in Fig. 5.

We can point out the significant improvement in the
detection accuracy. No ambiguity remains between peaks
corresponding to real defects and other peaks. Let us notice
that this second parameter to be set in our detection algo-
rithm also does not require a fine tuning. The value we have
used in our experiments seems to be a good compromise to
detect enough deteriorations with a minimum of false
alarms. Indeed, if the image brightness of an object changes
of 128 levels per displacement of 4 pixels (near the edge),
which is unusual, the slope is 32 and therefore fixing it at 20
appears as a reasonable choice. Let us recall that impulsive
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Fig. 6. An image part (left) and corresponding impulsive distortion detection using By (right).

distortions have usually stronger edges than the objects
occurring in interesting scenes.

This morphological filter performs well in the presence of
ambiguities. However, it might not reliably detect some
deteriorations. Fig. 6 shows an impulsive distortion, due
to a hair, extracted from “La belle et la béte” film sequence.
We can notice that the resulting defects detection is of poor
quality. Therefore, we propose a new detector combining
both the flat and the pyramid-shaped structuring elements.

3.2.3. Multiple structuring elements
The basic idea is to simultaneously use the two structur-
ing elements B, and B, in the same detector:

Dblack(l(x’ y)v BO? Bn)

= ((U(x.y) © By) © B,)OB,)OB,) — 1(x,y) “4)

Here B, and B, dimensions have been fixed to 5 X 5 instead
of 9 X 9 in order to handle defects of same size. Fig. 7 shows
the results obtained on images 3 and 6 using this new
morphological filter. Both results are very satisfactory and
demonstrate the robustness of our impulsive distortion
detection method.

Figs. 8 and 9 show the result of our detector on the whole
image of “La belle et la béte” frame using n = 0 and n = 20,
respectively. These results clearly demonstrate the useful-
ness of the slope n to minimize the rate of false detections,
which are particularly noticeable on the left-hand side of
Fig. 8. More examples are shown in Fig. 10. These results
illustrate once again the efficiency of our filter.

The major advantage of our technique over spatio-
temporal methods such as those mentioned in Refs.
[18,24] or [17] lies in its good computational performance.
Indeed, for a 2K image, the detection step is performed in
less than 6 s on a conventional workstation. Let us notice
that to achieve such a performance, the erosion and dilation
operators have been optimized under the application of both
the flat and the pyramid-shaped structuring elements [6].

To evaluate the performances of our dust spot detector, a
statistical study has been carried out on an undamaged film
sequence, which has been artificially deteriorated [5]. This
investigation has led to the following detection rates: 1.5%
of false detections and 9% of undetected defects. Let us
notice that it is obviously preferable to miss a few amount
of dust spots than to remove scene features. The false detec-
tion rate has then to be as low as possible to preserve the
visual quality of the processed movie.

Fig. 7. Impulsive distortion detection using B, and B,, on image 3 (left) and on image 5 (right).
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Fig. 8. Impulsive distortion detection on “La belle et la béte” frame (n = 0).

In the next section, our morphological filter is also used to
detect line scratches. However, we will see that a purely
spatial method could not perform a reliable detection of
such artifacts because of their frequent occurrence in natural
scenes and their persistence over the image sequence.
Therefore, we adopt a spatio-temporal method for the detec-
tion of such defects.

4. Spatio-temporal detection of line artifacts

While line scratches have the same photometric charac-
teristics as impulsive distortions, their particular shape and
their temporal behavior do not allow us to consider them as
a subset of impulsive distortions.

Line scratches are easily visible as vertical lines of bright
or dark intensity, oriented more or less vertically over much
of the image. The length or duration of a line scratch is
unknown (less than a frame up to a whole reel) and some-
times periodical, hence detecting the beginning and the trail-

Atad?

Fig. 9. Impulsive distortion detection on “La belle et la béte” frame (n =
20).

ing of a scratch is a special case. Detection is complicated
by the fact that lines occur as natural part in interesting
scenes. Furthermore, the defect persists in nearby or the
same location across several frames. Thus, detection of
line artifacts cannot rely on temporal discontinuity in
image brightness.

Rather than using only one frame to detect line scratches
[9,19,24], we focus on temporal features, even for not
perfectly vertical line scratches (see Fig. 11). Indeed, one
has to check the behavior of potential line artifacts over the
film sequence to reject false detections.

4.1. Vertical sub-sampling before detection

A line scratch is a local extremum of the intensity curve
along the x-axis. Film grain, dust spots and scanner artifacts
introduce noise as shown in Fig. 11. We rely on Radon
projections along the y-axis to minimize noise influence
[30]. This vertical sub-sampling is a simple and efficient
procedure to enhance vertical line features and reduce
noise [19,29]. Thus, line artifacts become vertically smooth
but remain horizontally impulsive.

Given a gray scale image I, our data projections may be
expressed as:

H-1

Py(x,i)= > I(x.j + Hi) (5)
=0

Projection height H is estimated in relation with the great-
est acceptable angle to the vertical (less than 5° in practice)
and the image resolution. All subsequent work up to the line
artifacts detection uses this vertical sub-sampling.

4.2. Spatial detection of line artifacts

Following line scratch features should be extracted from
the digital image: location with respect to the x-axis, angle
to the vertical, width. Local extrema within each projected
strip are detected using our morphological filter described in
Section 3.2. The same dimensions (5 X 5) are used for the
two structuring elements. The same threshold, § = 10,
successfully used for the detection of impulsive defects, is
also used here. However, unlike dust spots, line scratches
are usually poorly contrasted. Therefore, the slope n has
been fixed to zero. Fixing the thresholds at low values
allows one to detect every line artifact. However, this also
increases the number of wrong detections but the tracking
process will eliminate them. Fig. 12 shows, on the top, a
frame of “Les allumettes suédoises” video sequence and on
the bottom, a sub-sampled sequence of the same film. The
result of our spatial line scratch detection algorithm on this
sequence is shown on Fig. 13. A great number of false
detections is obtained due on the one hand to the use of
low thresholds and on the other hand to the high intensity
of noise, which makes the detection process very compli-
cated on this film sequence.

In the following, the temporal behavior of the detected
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Fig. 10. More examples of impulsive distortion detection.

artifacts will be checked to reject lines occurring as a natural
part of the images. Of course, only potential line scratches
will be tracked. Small edge chains, under 4-pixel-height
stripes (64 pixels), are discarded. Edge chains, which are
not vertically oriented (with a tolerance of 5°) are also
rejected. Both conditions are in concordance with the line
scratch features.

stk Line scratch

400 420 440 460 480 500

Fig. 11. Enlarged part of a frame. Noise is visible. Below, corresponding
line scratch profile.

Fig. 12. Frame of “Les allumettes suédoises” video sequence (720 X 576).
Below, sub-sampled sequence (10 frames with 16 pixel-height stripes) of
the same film.

4.3. Refinement using Kalman filtering

In this section, we aim at tracking the detected line arti-
facts over the image sequence to refine the previous spatial
detection process. An accurate detection field must be
achieved to allow a suitable reconstruction of the deterio-
rated areas. Indeed, the first detection step only provides an
approximate detection field, which may contain false detec-
tions. A powerful technique for tracking in this context is
the Kalman filter [13,37].

4.3.1. Kalman filter

The Kalman filter is a Bayesian estimation technique used
to track stochastic dynamic systems. The filter is based on
two probabilistic models:

e The system model, which describes the evolution over
time of the current state vector u;. The transition between
states is characterized by the known transition matrix @,

Fig. 13. Line scratch detection on “Les allumettes suédoises” sub-sampled
sequence.
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Fig. 14. Line scratch tracking over 30 frames (left). False detection beha-
vior (right). Units along the x-axis are pixels, along the time axis projected
stripes.

and the addition of Gaussian noise with a covariance Q.

e The measurement model, which relates the measurement
vector d; to the current state through a measurement
matrix H, and the addition of Gaussian noise with a
covariance Ry:

{Mk = Dpy—y + My
dp = Huwy + &,

M ~ N, Qp)
§k -~ N(O»Rk)

(6)

Kalman filter algorithm operates in two phases: predic-
tion and update. The prediction step consists in a state esti-
mate extrapolation and a state covariance extrapolation:

-1 = Pp—1 k-1
. . . (7N
Pri—1 = Pr 1 Pr—1jp—1 D1 + Qi

Then, the predicted covariance is used to compute a new
Kalman gain matrix K. Finally, both current covariance

matrix and current state are updated:

Ky = Py Hy [HPyy Hy + R,

U = -1 + Kildy — Hyllgge—1 1 3)
Py = (I = KeHp)Pry—

The recursive process is initialized by #, an initial estimate
of u and Py, its error covariance matrix.

4.3.2. Line scratch tracking

The first thing to specify when designing the Kalman
filter is the representation used for the state vector [13,37].
In our case, the state vector is related to the position x(¢) of
the vertical artifact lines over time.

Line scratches are usually generated by rubbing against
rotating mechanical pieces. Therefore, they would have a
sinusoidal evolution over the image sequence. Classical
representation of a sinusoid is: x(f) = A sin(wt + ¢). To
involve Kalman filtering, we use a linear approximation of
this model:

1

x(t) = A[b(t +c)— 3

bt + c)3] 9)
which is based on the well-known linear approximation of a
sine curve expressed at the third order:

sin(x) =x —x°/3!, x—0 (10)

Therefore, the state vector of our line artifact tracking
system is: uy = (ay a; a, as)' where ay, aj, a; and as
denote the coefficients of our cubic polynomial model
derived from Eq. (9). The expression of the next state x(t +
dr) leads to the following transition matrix:

1 dr d? df

0 1 2dr 3d7

@ = (11
0 0 1 3dr
0 0 O 1

The starting state vector is:

ug=(rg 0 0 0) (12)

with r being the initial position of the detected line scratch.
The covariance matrices are initialized as follows [16]:

Q=1 0 0 1077 Ry = wy (13)

with p being a convergence factor and w the initial width of
the line scratch.

The state covariance matrix coefficients have been initi-
alized to zero.

The Kalman-based tracking process then provides the
trajectories of the potential detected line artifacts. The
examination of the obtained trajectories easily permits one
to distinguish between effective line artifacts (see the left
profile on Fig. 14) and false detections (right profile in
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Fig. 15. Impulsive distortion removal on “La belle et la béte” frame.

Fig. 14). Let us point out that the latter case may not occur in
practice because the tracking of the corresponding line
would be interrupted after a few iterations with regard to
its incompatible behavior with respect to a line artifact
trajectory. Such a false detection behavior is shown to better
illustrate the difference between line artifacts and false
candidate profiles.

Finally, let us emphasize that our spatio-temporal line
scratch detector is a fast process: 10 s/video image (about
20 s/motion picture image).

4.3.3. Discussion

While the digital film restoration system might be tolerant
up to 5% of false detections in case of impulsive defects, this
tolerance is unacceptable in case of line scratches. Indeed,
the removal of significant scene details would have disas-
trous consequential effects on the resulting restored movie.
Human intervention is therefore indispensable to check the
line scratch detection results prior to the final restoration
stage. Let us emphasize that the rate of undetected line
artifacts must be close to zero while a tolerance up to
10% would be acceptable in case of impulsive distortions.

5. Impulsive distortion removal

This stage consists in post-processing the detection field.
To reconstruct the corrupted pixels of the detected impul-
sive distortions, we use an interpolation method
[17,20,22,24,35,36]. Classical image interpolation proce-
dures fall into three main categories: intensity-based,
contour-based and shape-based interpolations. In our case,
we involve an intensity-based interpolation. This technique
takes the original pixel intensity value and generates a new
interpolated pixel intensity. The calculation of the interpo-
lated value takes a limited number of data points within a
small neighborhood. Two kinds of neighborhood may then

be used:

e a spatial neighborhood extracted from the current frame;

e a spatio-temporal neighborhood extracted from the
current image and the preceding and/or the following
frames of the sequence.

As computing power is an important factor for old film
restoration, we use a spatial neighborhood around the arti-
facts. Let us notice that as the size of the considered impul-
sive distortions is limited to a few pixels, using only the
pixels surrounding these deteriorations in the current
frame seems to be sufficient for efficient interpolation. Of
course, this spatial restoration technique may easily be
extended to a spatio-temporal process if the motion is
compensated for. However, this will induce higher compu-
tational cost mainly caused by the motion analysis stage.

5.1. A two-stage restoration method

The aim here is to produce as seamless a restoration as
possible. To completely remove the detected artifacts, we
propose a two-stage restoration approach, which first recon-
structs low-frequency components and then deals with
higher frequencies. Thus, our technique provides the user
with a choice to select explicitly the restoration quality:
moderate quality with the first restoration step, high quality
with an additional step. Off course, there is a trade-off
between the desired restoration quality and the processing
speed.

5.1.1. Low-pass image reconstruction

Classical methods such as low-pass filters [12] or median
filters [1,18,26,28] are not appropriate tools for high-quality
restoration because they deteriorate high-frequency compo-
nents of the images. Our low-pass image reconstruction
method is a polynomial interpolation based on a cubic poly-
nomial:

3 3

Ip(r,y) =Y

axy' (14)
=0 =0

which is the most simple model to approximate low-
frequency components of an image.

To estimate the model coefficients a;, we use a least-
squares technique whose input data are the coordinates
(x;,y;) of uncorrupted pixels P; belonging to a pixel block
2 around the defect.

The resulting estimates d;; are then used to reconstruct
low-frequency components of the distortion area using

3 3

RLP(xj’Yj) = Z

k=0 [=

o k]
aX;yj, (. y) € 2 15)
0
where 2 denotes the set of deteriorated pixels to reconstruct.
Our low-pass reconstruction method yields impressive
results on “La belle et la béte” frame exhibited in Fig. 15.
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Fig. 16. Part of frame 25 of “La belle et la béte” sequence before and after correction.

We can notice that most impulsive distortions are
removed leaving non-degraded areas of the frame
untouched. Other results are also depicted in Figs. 16 and
17. However, the restoration is not as seamless in the case of
line artifacts. Due to their very strong structure and effect on
the appearance of the frame, a high-quality restoration is
necessary. Fig. 18 shows, on the left, an image part of a
damaged “Fréres Lumiére” film sequence and, on the
middle, the result of our low-pass reconstruction technique
on the detected line scratch. We can easily notice the
perceived visibility of the interpolated line area. This
phenomenon would be emphasized in a film sequence.
This shows that a suitable old film restoration process
must integrate a method of dealing with high-frequency
components (i.e. film grain), which as expected, have
been lost in the present case.

5.1.2. High-pass image reconstruction

Numerous image restoration techniques exist but most of
them do not or just partially deal with the high frequencies
of the images. Very little research work has been devoted to
this issue [36]. Furthermore, they are mainly based on the
video format [17,20,24].

We propose a high-pass image reconstruction technique
based on Fourier series. First, we extract the high frequen-
cies from the area (pixel bloc £), which has been used for
the reconstruction of the low frequencies of the degraded

region. This is achieved with a simple difference:

Typ(xi, yi) = 1(x, yi) — Ip(x, y0), (i y) €2 (16)
Fourier series are well suited for the representation of high
frequencies of image profiles. Therefore, our interpolation
method relies on the following model:

Nyx Ny

Lyp(x,3) = D [, sin(wgx) + by, cos(wyx)]
k=0 [=0

X [ayy, sin(wy,y) + by, cos(wg,y)] (17

where wy, and wy, represent the different frequencies of the
model.

To illustrate our estimation method of the model coeffi-
cients Gy, by, Wiy, Agy, by and wyy, let us consider the case of
one-dimensional signals. The method may then easily be
extended to two-dimensional ones. An input signal S(x)
may be represented using Fourier series as:

Ny
S() = a sin(wyx) + by cos(wyx) (18)
k=0

Assuming S(x) sampled at a constant period in an interval
[0,x,], the model frequencies w, can be expressed as: w; =
2wk/x,, k € [0,x, — 1]. To estimate the model coefficients
a, by and w;, we use an iterative scheme based on the

Fig. 17. Part of frame 45 of “La belle et al béte” sequence before and after correction.
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~ _ < _ A

Fig. 18. Frame of a “Fréres Lumiere” film sequence (left), corresponding low-frequency reconstruction (middle) and low and high frequency reconstruction
(right).

Fig. 19. Enlarged part of the previous original image before restoration (left), after low-frequency reconstruction (middle) and after low- and high-frequency
reconstruction (right).
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minimization of the following criterion:

E(ag, by, @) = > ag sin(wgx;) + by cos(@x;) = Si(x)T?
X, €EP

19)

The first step of our incremental algorithm consists in esti-
mating the coefficients a, by and w, using the model:

So(x;) = ag sin(wpx;) + by cos(wyx;), X EP (20)

Assuming Sy(x;) = S(x;), x; € 2, a Fourier transform of the
signal Sy(x) provides an estimation of the frequency w.
Then, a least-squares technique, derived from Eq. (20) is
used to compute the two other model coefficients. The
second stage of our method relies on the decomposition of
the signal Sy(x) as:

S1(x) = So(x;) — [dosin(@ox,) + bocos(dpx)],  x; € 2

21

This process is repeated until the value of criterion
E(a,, l;k, @y,) falls under a threshold.

A similar procedure is used to estimate the image model
coefficients day,, ka, Oy Grys I;ky and @y,. Therefore, the
high-frequency components of the distortion area may be
reconstructed. The resulting reconstructed  signal
Rup(x;, ¥, (xj, ;) € 2, is then added to the previously
computed low-frequency signal R;p(x,y) to complete our
two-stage reconstruction process. Fig. 18 shows, on the
right, the result of such restoration method, which produces
significant improvement in quality. Some attempt to better
illustrate the difference between the low-pass interpolation
and the two-stage reconstruction technique is shown in
enlarged parts of previous frames (Fig. 19). At that scale,
the low-frequency interpolation shows a visibly different
area (middle) while the low- and high-frequency restora-
tions do not suffer at all from this over-smoothing phenom-
enon. This result clearly shows the important reduction of
the visibility of the interpolated area and demonstrates that
our method is an efficient way of removing distortions from
degraded image sequences.

6. Summary and conclusion

We have presented an efficient detection—reconstruction
approach for degraded image sequence restoration. The
main philosophy in detection is to restrict the attention of
the filtering mechanism only to the distorted areas thus leav-
ing non-degraded areas of the frame untouched. A new
morphological filter, which incorporates both computational
simplicity and good performance, has been introduced. The
structuring elements are simple (flat or pyramid-shaped) but
are well-suited for the detection of impulsive distortion.
This purely spatial method is also used to detect line
scratches, which are common artifacts in degraded motion
picture films. To separate possible line artifacts from false
detections, the potential scratches are tracked over the

frames using a Kalman filter. The reconstruction of the
detected damaged areas is then performed using a new
scheme for detail preserving interpolation. This distortion
removal algorithm is a two-stage interpolation technique.
The low frequencies of the deteriorated areas are first recon-
structed using a simple polynomial interpolation. Then, we
deal with the higher frequencies using an appropriate model
for such interpolation: Fourier series. This interpolation
turned out to be a powerful method leading to a nearby
invisible restoration.

Acknowledgements

This work is supported by CENTRIMAGE (Laboratories
Neyrac Films — Citélab), Paris, France, under contract
C58.

References

[1] B. Alp, et al., Median-based algorithms for image sequence proces-
sing, SPIE Visual Communications and Image Processing (1990)
122-133.

[2] G.R. Arce, E. Malaret, Motion preserving ranked-order filters for
image sequence processing, IEEE International Conference on
Circuits and Systems, 1989, pp. 983-986.

[3] D.H. Bailey, P.H. Swarztrauber, The fractional Fourier transform and
applications, SIAM Review 33 (3) (1991) 389-404.

[4] J.C. Brailean, Simultaneous recursive displacement estimation and
restoration of noisy-blurred image sequences, IEEE Transactions on
Image Processing 4 (9) (1995).

[5] O. Buisson, Analyse de séquences d’images haute résolution, Appli-

cation a la restauration numérique de films cinématographiques, PhD

thesis, Université de La Rochelle, 1997.

O. Buisson, B. Besserer, S. Boukir, F. Helt, Deterioration detection

for digital film restoration, CVPR’97, International Conference on

Computer Vision and Pattern Recognition, Puerto Rico, USA, vol.

1, June 1997, pp. 78-84.

[7] C.L. Chan, et al., Image sequence filtering in quantum-limited noise
with applications to low-dose fluoroscopy, IEEE Transactions on
Medical Imaging 12 (3) (1993) 620-621.

[8] M.N. Chong, S. Kalra, D. Krishnan, A. Laud, Computerized motion
picture restoration system, Proceedings of BroadcastAsia98, 1998,
pp- 153-159.

[9] E. Decenciere Ferrandiere, Restauration automatique de films
anciens, PhD thesis, Ecole Nationale Supérieure des Mines de
Paris, 1997.

[10] E. Dubois, S. Sabri, Noise reduction in image sequences using
motion-compensated temporal filtering, IEEE Transactions on
Communications COM-32 (7) (1984) 826-831.

[11] R.E. Edwards, Fourier Series, 2nd ed., Springer, Berlin, 1982.

[12] S. Geman, D.E. McClure, A nonliner filter for the film restoration and
other problems in image processing, Graphical Models and Image
Processing (1992) 4.

[13] B. Giai-Checa, R. Deriche, T. Viéville, O. Faugeras, Tracking
segments in a monocular sequence of images, Technical Report,
INRIA, 1993.

[14] T.S. Huang, Image Sequence Analysis, Springer, Berlin, 1981.

[15] T.S. Huang, Image Sequence Processing and Scene Analysis, vol. 7,
Springer, New York, 1983 (COM-32).

[16] L. Joyeux, Reconstruction de séquences d’images haute résolution,
Application a la restauration de films cinématographiques, PhD
thesis, Université de La Rochelle, France, January 2000.

[6

=



516 L. Joyeux et al. / Image and Vision Computing 19 (2001) 503-516

[17] S. Kalra, M.N. Chong, D. Krishnan, A new auto-regressive (AR)
model-based algorithm for motion picture restoration, ICASSP’97,
International Conference on Acoustics, Speech and Signal Proces-
sing, vol. 4, 1997.

[18] A.C. Kokaram, Motion picture restoration, PhD thesis, University of
Cambridge, May 1993.

[19] A.C. Kokaram, Detection and removal of line scratches in degraded
motion picture sequences. Signal Processing VIII: Theories and
Application, Proceedings of EUSIPCO-96, Trieste, Italy, 1996.

[20] A.C. Kokaram, S.J. Godsill, A system for reconstruction of missing
data in image sequences using sampled 3D AR models and MRF
motion priors, ECCV’96, European Conference on Computer Vision,
vol. 2, 1996, pp. 613-624.

[21] C.H. Lee, Restoring spline interpolation of CT images, IEEE Trans-
actions on Medical Imaging (3) (1983) 142—149.

[22] S.Z.Li,K.L.Chan, H. Wang, Bayesian image restoration and segmenta-
tion by constrained optimization, CVPR’96, International Conference
on Computer Vision and Pattern Recognition, 1996, pp. 1-6.

[23] D.M. Martinez, Model-based motion estimation and its application to
restoration and interpolation of motion pictures, PhD thesis, Massa-
chussetts Institute of Technology, 1986.

[24] R.D. Morris, Image sequence restoration using Gibbs distributions,
PhD thesis, University of Cambridge, 1995.

[25] S. Mueller, B. Nickolay, Morphological image processing for the
recognition of surface defects. Proceedings of the SPIE, 2249-58,
1994, pp. 298-307.

[26] Nieminen, et al., A. new class of detail-preserving filters for image
processing, IEEE Transactions on PAMI (9) (1987) 74-90.

[27] M.K. Ozkan, et al., Efficient multiframe Wiener restoration of blurred
and noisy image sequences, IEEE Transactions on Image Processing
1 (1992) 453-476.

[28] 1. Pitas, A.N. Venetsanopoulos, Nonlinear Digital Filters. Principles
and Applications, Kluwer Academic, Dordrecht, 1990.

[29] L. Rosenthaler, A. Wittmann, A. Giinzl, R. Gschwind, Restoration of
old movie films by digital image processing, IMAGE’COM 96,
Bordeaux, France, May 1996, pp. 1-6.

[30] J.L.C. Sanz, E.B. Hinkle, A.K. Jain, Radon and Projection, Trans-
form-Based, Computer Vision, Springer, Berlin, 1987.

[31] J. Serra, Image Analysis and Mathematical Morphology, Academic
Press, London, 1982.

[32] M. Sezan, et al., Motion-compensated multiframe Wiener restoration
of blurred and noisy image sequences, IEEE ICASSP 3 (1992) 293—
296.

[33] S. Stenberg, Grayscale morphology, Computer Graphics and Image
Processing 35 (1986) 333-335.

[34] D. Suter, P. Richardson, Historical film restoration and video coding,
Proceedings of PCS’96, Melbourne, 1996, pp. 384—396.

[35] M. Unser, et al., Fast B-spline transforms for continuous image repre-
sentation and interpolation, IEEE Transactions on Pattern Analysis
and Machine Intelligence 13 (3) (1991) 277-285.

[36] R. Veldhuis, Restoration of Lost Samples in Digital Signals, Prentice
Hall, Englewood Cliffs, NJ, 1990.

[37] G. Welch, G. Bishop, An introduction to the Kalman filter, Technical
Report, University of North Carolina at Chapel Hill, 1997.



